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Abstract

We investigate the representation theory of direct sums of Lie algebras. In par-
ticular, we focus on the representation theory of so(4) ≃ sp(1)⊕ sp(1).

Keywords— representation theory

1 General theory

In order to understand the representation theory of direct sums of Lie algebras, we
need to understand the irreducible representations. We begin with the following
example of a representation of a direct sum.

Definition 1.1. Suppose g1, g2 are Lie algebras. Let (Vi, ρi) be a representation of
gi. Denote the following representation of g1 ⊕ g2 by (V1, ρ1) ⊠ (V2, ρ2) := (V, ρ),
where V := V1 ⊗ V2 and ρ(x, z) := ρ1(x)⊗ idV2 + idV1 ⊗ ρ2(z).

When dealing with compact Lie groups G1 and G2, it is known that a finite dimen-
sional representation (W,ρ) of G1×G2 is irreducible if and only if (W,ρ) ≃ (V1, ρ1)⊠
(V2, ρ2) for finite dimensional irreducible representations (Vi, ρi) of Gi [Sep07, Theo-
rem 3.9].

Translating this to the language of Lie algebras, if g1, g2 are the Lie algebras of
compact Lie groups, then a finite dimensional representation of g1⊕ g2 is irreducible
if and only if it is isomorphic to (V1, ρ1) ⊠ (V2, ρ2) for finite dimensional irreducible
representations (Vi, ρi) of gi.
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The proof of this theorem uses character theory. However, character theory is not
necessary for the case we are interested in: so(4) ≃ sp(1)⊕ sp(1). I am interested in
this case because I use representations of so(4) to study instantons with rotational
symmetry (using the notation from my thesis).

Before we deal with our specific case, we first mention a useful property of ⊠.

Proposition 1.2. Suppose that g1 and g2 are Lie algebras. Let (Vi, ρi) and (Wi, λi)
be representations of gi. Then

((V1, ρ1)⊠ (V2, ρ2))⊗ ((W1, λ1)⊠ (W2, λ2))

≃ ((V1, ρ1)⊗ (W1, λ1))⊠ ((V2, ρ2)⊗ (W2, λ2)) (1)

Proof. Let (V, ρ) denote the representation on the left-hand side of the statement
and (W,λ) the representation on the right-hand side. Note that V ≃ W . We see
that

ρ(x, z) :=ρ1(x)⊗ idV2 ⊗ idW1 ⊗ idW2 + idV1 ⊗ ρ2(z)⊗ idW1 ⊗ idW2

+ idV1 ⊗ idV2 ⊗ λ1(x)⊗ idW2 + idV1 ⊗ idV2 ⊗ idW1 ⊗ λ2(z).

We can similarly write λ. Under the isomorphism ϕ : V → W , we see that λ◦ϕ = ϕ◦ρ.
Thus, the representations are isomorphic.

2 Irreducible representations of sp(1)⊕ sp(1)

In this section, we classify all irreducible representations of sp(1)⊕ sp(1).

Definition 2.1. Let υ1, . . . , υ6 ∈ sp(1)⊕ sp(1) denote the standard basis of sp(1)⊕
sp(1). That is, υ1, υ2, υ3 is the standard basis for sp(1) ⊕ 0 and υ4, υ5, υ6 is the
standard basis for 0⊕ sp(1).

Let (V, ρ) be an irreducible complex representation of sp(1) ⊕ sp(1). Complexify
the Lie algebra and, similar to the case of classifying representations of sp(1), define

L± := iρ(υ1)∓ ρ(υ2), L3 := iρ(υ3), K± := iρ(υ4)∓ ρ(υ5), K3 := iρ(υ6). (2)

Then L3 and K3 span the Cartan subalgebra h of sp(1)⊕ sp(1).

Proposition 2.2. The irreducible representations of sp(1)⊕sp(1) are indexed by two
integers. Given m,n ∈ N, denote the irreducible representation with highest weight[
m−1
2

n−1
2

]
by (Vm,n, ρm,n).

Note 2.3. The representation (Vm,n, ρm,n) is a mn-dimensional complex represen-
tation. Indeed, we generate mn distinct eigenvectors of L3 and K3 (when looking at
the pair of eigenvalues together).
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Proof. Let λ : h → C be the highest weight of the representation. Note that we can

write λ as a row vector
[
λ1 λ2

]
acting on h by writing elements of h in the L3,K3

basis and multiplying the matrices to get a complex number.
Note that [L±, L3] = ∓L± and [K±,K3] = ∓K±. Additionally, [L+, L−] = 2L3

and [K+,K−] = 2K3. Finally, all other commutators vanish. Thus, we see that the

roots of the Lie algebra are
[
±1 0

]
and

[
0 ±1

]
. We choose the positive roots to

be
[
1 0

]
and

[
0 1

]
. As λ is the highest weight of the representation, we have that

the weight space V[
λ1 +m λ2 + n

] = 0 for all m,n ∈ Z≥0, other than m = n = 0.

Let 0 ̸= v ∈ Vλ. Hence, L3v = λ1v and K3v = λ2v. Then we see that

L3(L
+)m(K+)nv = (λ1 +m)(L+)m(K+)nv,

K3(L
+)m(K+)nv = (λ2 + n)(L+)m(K+)nv.

Thus, (L+)m(K+)nv ∈ V[
λ1 +m λ2 + n

] = 0. Hence, in particular, we have that

L+v = 0 = K+v (taking (m,n) = (1, 0), (0, 1)).
Note that (K−)nv ∈ V[

λ1 λ2 − n
] and (L−)mv ∈ V[

λ1 −m λ2

]. As sp(1) ⊕

sp(1) is semisimple, the direct sum of the weight spaces gives the representation
space. As the above weights are distinct, the eigenvectors are linearly independent.
As we are dealing with finite dimensional representations, eventually there is some
m,n ∈ N such that (L−)m−1v, (K−)n−1v ̸= 0 but (L−)mv = (K−)nv = 0.

Using the commutation relations, one can show that

L+(L−)mv = m(2λ1 −m+ 1)(L−)m−1v,

K+(K−)nv = n(2λ2 − n+ 1)(K−)n−1v.

However, these must vanish, as (K−)nv = 0 and (L−)mv = 0. Hence, we see that
λ1 =

m−1
2 and λ2 =

n−1
2 .

We show exactly what these irreducible representations look like (and also prove
that they exist for all m,n ∈ N).

The dimension of the centre of the universal enveloping algebra of a semi-simple
Lie algebra equals the rank of the Lie algebra. Indeed, the Casimir operators are a
basis for this space. In our case of sp(1)⊕ sp(1), we have two Casimir operators.

Definition 2.4. The Casimir operators for a representation (V, ρ) of sp(1)⊕sp(1)
are

C1 := −
3∑

i=1

ρ(υi)
2, C2 := −

6∑
i=4

ρ(υi)
2. (3)
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Note that the sum of these Casimir operators gives the usual quadratic Casimir op-
erator for this Lie algebra.

It is straightforward to see that these operators commute with ρ(υ, ω) for all
υ, ω ∈ sp(1) ⊕ sp(1), as they come from the Casimir operator for each summand of
the direct sum.

Lemma 2.5. Suppose we have an irreducible complex representation (Vm,n, ρm,n). As
the Casimir operators commute with the representation, Schur’s Lemma tells us that
the Casimir operators are proportional to the identity. In particular, C1 =

m2−1
4 Imn

and C2 =
n2−1
4 Imn.

Proof. Using the definitions of L±,K±, L3,K3, we see that C1 = L2
3 + L3 + L−L+

and C2 = K2
3 +K3 +K−K+.

Let v ̸= 0 be a highest weight eigenvector. That is, L3v = m−1
2 v and K3v = n−1

2 v.
From above, we have that L+v = 0 = K+v. Using these identities, we see that
C1 =

m2−1
4 Imn and C2 =

n2−1
4 Imn.

Therefore, we see that the Casimir operators classify the irreducible representa-
tions. Moreover, by examining their eigenvalues, they classify all representations.

Proposition 2.6. The irreducible representation (Vm,n, ρm,n) exists for all m,n ∈ N.
Denote the irreducible, complex, a-dimensional representation of sp(1) by (Va, ρa).
Then (Vm,n, ρm,n) ≃ (Vm, ρm)⊠ (Vn, ρn).

Proof. Consider the representation (Vm, ρm)⊠ (Vn, ρn) of sp(1)⊕ sp(1). We see that

the Casimir operators of this representation are C1 = m2−1
4 Imn and C2 = n2−1

4 Imn.
Therefore, (Vm, ρm)⊠ (Vn, ρn) ≃ (Vm,n, ρm,n).

In particular, such representations are irreducible and moreover, all irreducible
representations of sp(1)⊕ sp(1) can be constructed in this way.

Therefore, we have proven the original theorem in our case, without the use of
character theory.

Note 2.7. This approach does not work in general as the Casimir operators cannot
generally be written in such a clear way, as they may not just be given by the quadratic
Casimir operators of the summands of the direct sum. That is, being able to write
C1 and C2 in terms of L±,K±, L3,K3 allowed us to prove this result.

As sp(1) ⊕ sp(1) ≃ spin(4) has Dynkin diagram D2, its representations are self-
dual. Therefore, its irreducible representations are either real or quaternionic. We
prove this more directly.
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Proposition 2.8. When m ≡ n (mod 2), we have that (Vm,n, ρm,n) is a real repre-
sentation. Otherwise, (Vm,n, ρm,n) is a quaternionic representation.

Note 2.9. As all irreducible, complex representations are of real or quaternionic
type, they are all self-dual. In particular, we have

Irr(spin(4),C)R = {(Vm,n, ρm,n) | n ≡ m (mod 2)},
Irr(spin(4),C)C = ∅,
Irr(spin(4),C)H = {(Vm,n, ρm,n) | n ̸≡ m (mod 2)}.

Thus, for n ≡ m (mod 2), there is a unique irreducible real mn-representation
(Rmn, ϱm,n) whose complexification is (Vm,n, ρm,n). For n ̸≡ m (mod 2), there is
a unique irreducible real 2mn-representation (R2mn, ϱm,n) whose complexification is
(Vm,n, ρm,n)

⊕2.
Moreover, when restricting the scalars of an irreducible quaternionic representa-

tion to C, the complex representation is isomorphic to (Vm,n, ρm,n) for some n ̸≡
m (mod 2) or (Vm,n, ρm,n)

⊕2 for some n ≡ m (mod 2).

Proof. Suppose that m ≡ n (mod 2). We know that (Vm,n, ρm,n) ≃ (Vm, ρm) ⊠
(Vn, ρn). As (Vm, ρm) and (Vn, ρn) are either both real or both quaternionic represen-
tations of sp(1), we have that there are conjugate-linear equivariant maps Jm : Vm →
Vm and Jn : Vn → Vn such that J2

m = J2
n = (±1)id, where we have +1 if the m and

n are odd and −1 if m and n are even.
Let Jm,n := Jm⊗Jn : Vm,n → Vm,n. We see that this map is conjugate-linear. Ex-

panding the definition of ρm,n, we see that Jm,n is equivariant. As J2
m,n = (±1)2id =

id, we have that (Vm,n, ρm,n) is a real representation. That the other representations
are quaternionic follows as all irreducible representations of sp(1) ⊕ sp(1) must be
one or the other.

In order to understand tensor products, we need to know how to decompose them.

Proposition 2.10. The tensor product of (Va,b, ρa,b)⊗ (Vc,d, ρc,d) can be decomposed
into a sum of irreducible representations as follows:

(Va,b, ρa,b)⊗(Vc,d, ρc,d) ≃
min(a,c)⊕

i=1

min(b,d)⊕
j=1

(Va+c+1−2i,b+d+1−2j , ρa+c+1−2i,b+d+1−2j). (4)

Proof. Recall that (Va,b, ρa,b) is given by (Va, ρa)⊠ (Vb, ρb). Then by Proposition 1.2,

(Va,b, ρa,b)⊗ (Vc,d, ρc,d) ≃ ((Va, ρa)⊗ (Vc, ρc))⊠ ((Vb, ρb)⊗ (Vd, ρd)) .

The result follows from the decomposition of tensor products of irreducible represen-
tations of sp(1).
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