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Abstract

Following Bröcker and Dieck, adapting results for compact Lie groups to Lie
algebra, we investigate what it means to be a real, complex, or quaternionic repre-
sentation and the relationships between them [BTD85, Ch. II, § 6]. We also classify
the representations of sp(1).

Keywords— representation theory

1 Different types of representations

In this section, we define what it means to be a real, complex, or quaternionic rep-
resentation as well as functors between them. We then examine the relationships
between these functors.

Definition 1.1. A (complex) representation of a Lie algebra g is a pair (V, ρ),
where V is a complex vector space and ρ : g → gl(V ) is a Lie algebra homomorphism.
That is, ρ is linear and for all x, y ∈ g, ρ satisfies ρ([x, y]) = [ρ(x), ρ(y)]. If V is a
real (resp. quaternionic) vector space and ρ is R-linear (resp. H-linear), then (V, ρ)
is called a real (resp. quaternionic) representation.

Definition 1.2. Let (V, ρ) be a representation of g. We say that an inner product
⟨·, ·⟩ on V is g-invariant if

⟨ρ(x)v, w⟩+ ⟨v, ρ(x)w⟩ = 0.
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Proposition 1.3. If g is the Lie algebra of a compact Lie group and (V, ρ) a repre-
sentation of g, then there is a g-invariant inner product on V .

Proof. This result is true because all representations of compact Lie groups have
a G-invariant inner product on V . Thus, we consider the associated Lie algebra
representation and find that the inner product is g-invariant. However, we need
the Lie group to be simply-connected for all representations of g to arise this way.
If g is the Lie algebra of a compact Lie group, then it is the Lie algebra of the
connected component of this Lie group containing the identity. Furthermore, it is
the Lie algebra of the universal cover of this connected, compact Lie group, which is
a compact, simply-connected Lie group.

Based on the above result, we only consider Lie algebras that are the Lie algebra
of a compact Lie group.

Definition 1.4. As we always have a g-invariant inner product, we consider uni-
tary, orthogonal, and symplectic representations (V, ρ), where the image of ρ is
contained in su(k), so(k), and sp(k), respectively. For such Lie algebras, one can
show that every complex, real, and quaternionic representation is a direct sum of
irreducible representations; such representations are semi-simple.

Definition 1.5. Let (V, ρ) be a complex representation. A real (resp. quater-
nionic) structure on (V, ρ) is a conjugate-linear equivariant map J : V → V such
that J2 = idV (resp. J2 = −idV ). Explicitly, a conjugate-linear equivariant map is
one where for all v, w ∈ V , α ∈ C, and x ∈ g, we have

J(v + w) = J(v) + J(w), J(αv) = αJ(v), J(ρ(x)v) = ρ(x)J(v).

A complex representation (V, ρ) is said to be of real (resp. quaternionic) type if
it admits a real (resp. quaternionic) structure.

Note that a representation can be both quaternionic and real type. For example,

consider (H, 0). Using H ≃ C2, we take v 7→ v and v 7→

[
0 1

−1 0

]
v to get a real and

quaternionic structure, respectively.
We define some categories of representations and functors between them.

Definition 1.6. Let K = R,C,H and let Rep(g,K) be the category whose objects are
representations on K vector spaces and whose morphisms are K-linear g equivariant
maps.

Let Rep+(g,C) and Rep−(g,C) be the categories of complex representations with
real and quaternionic structures, respectively. Morphisms in these categories are C-
linear equivariant maps which commute with the structure maps.
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Proposition 1.7. The categories Rep(g,R) and Rep+(g,C) are equivalent. That
is, real representations are just complex representations with additional structures.
Similarly, Rep(g,H) and Rep−(g,C) are equivalent categories.

Proof. We construct functors e+ : Rep(g,R) → Rep+(g,C) and s+ : Rep+(g,C) →
Rep(g,R) as follows. Given a real representation (U, ρ), let e+(U, ρ) := (C⊗RU, idC⊗
ρ, J) with structure map J(α⊗ u) := α⊗ u. Given a representation (V, ρ, J), let V±
be the ±1-eigenspaces of J . As 2v = (v + J(v)) + (v − J(v)), we have V = V+ ⊕ V−.
Note that multiplication by i induces V+ ≃ V−. Let s+(V, ρ, J) := (V+, ρ), where ρ
is restricted to act on V+. Note that ρ(x) |V+ : V+ → V+. Indeed, if v ∈ V+, then
J(v) = v, so

ρ(x)v = ρ(x)J(v) = J(ρ(x)v),

so ρ(x)v ∈ V+.
The compositions e+ ◦ s+ and s+ ◦ e+ are naturally equivalent to the identity.

Indeed,
e+ ◦ s+(V, ρ, J̃) = e+(V+, ρ) = (C⊗R V+, idC ⊗ ρ, J).

But this representation is equivalent to (V, ρ, J̃) via the linear isomorphism ϕ : C⊗R
V+ → V taking ϕ(α⊗ v) := αv. Note that

ϕ((idC ⊗ ρ)(x)(α⊗ v)) = ϕ(α⊗ ρ(x)v) = αρ(x)v = ρ(x)ϕ(α⊗ v);

ϕ(J(α⊗ v)) = ϕ(α⊗ v) = αv = J̃(αv) = J̃(ϕ(α⊗ v)).

Above we use that v ∈ V+. Similarly,

s+ ◦ e+(U, ρ) = s+(C⊗R U, idC ⊗ ρ, J) = ((C⊗R U)+, idC ⊗ ρ).

As J(α⊗u) = α⊗u, (C⊗RU)+ = {1⊗u | u ∈ U}. This representation is equivalent
to (U, ρ) via the linear isomorphism ψ : (C⊗R U)+ → U taking ψ(1⊗ u) := u. Note
that

ψ((idC ⊗ ρ)(x)(1⊗ u)) = ψ(1⊗ ρ(x)u) = ρ(x)u = ρ(x)ψ(1⊗ u).

We construct functors e− : Rep(g,H) → Rep−(g,C) and s− : Rep−(g,C) → Rep(g,H)
as follows. Let (W,ρ) be a quaternionic representation. Choose a H-basis {e1, . . . , en}
of W . Let V1 := spanC(e1, . . . , en) and V2 := spanC(je1, . . . , jen). As a complex
vector space, W is isomorphic to V1 ⊕ V2. Let ρ1ij , ρ2ij ∈ C such that ρ(x)ei =
ρ1ijej + ρ2ijjej . As ρ is H-linear, we have that ρ(x)jei = jρ(x)ei = ρ1ijjej − ρ2ijej .

Written in the C-basis, ρ(x) acts on V1 ⊕ V2 as ρ̃(x) :=

[
ρ1 −ρ2
ρ2 ρ1

]
. Moreover, we

can define J to be the action of j on V1 ⊕ V2. Explicitly, J : V1 ⊕ V2 → V1 ⊕ V2 takes
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J (αiei, βjjej) := (−βjej , αijei). Note that J is conjugate-linear and equivariant,
satisfying J2 = −idV1⊕V2 . Indeed, we see

J(ρ̃(x)(ei, 0)) = J(ρ1ijej , ρ2ijjej) = (−ρ2ijej , ρ1ijjej) = ρ̃(x)J(ei, 0),

J(ρ̃(x)(0, jei)) = J(−ρ2ijej , ρ1ijjej) = (−ρ1ijei,−ρ2ijjej) = ρ̃(x)J(0, jei).

Then e−(W,ρ) := (V1⊕V2, ρ̃, J). Given a representation (V, ρ, J), define f : H×V →
V as follows. Given p ∈ H, we can write it uniquely as p = α+βj for α, β ∈ C. Then
let p · v ≡ f(p, v) := αv + βJ(v). Because J is conjugate-linear and J2 = −idV , we
have that this gives V the structure of a quaternionic vector space. Note that using
this quaternionic scalar multiplication, we have that as J is equivariant and ρ(x) is
C-linear,

ρ(x)p · v = ρ(x)(αv + βJ(v)) = αρ(x)v + βJ(ρ(x)v) = p · ρ(x)v.

Thus, ρ(x) is H-linear. Then let s−(V, ρ, J) := (V, ρ), where we view V as a quater-
nionic vector space and ρ(x) as H-linear.

The compositions e− ◦ s− and s− ◦ e− are naturally equivalent to the identity.
Indeed,

s− ◦ e−(W,ρ) = s−(V1 ⊕ V2, ρ̃, J) = (V1 ⊕ V2, ρ̃).

This representation is equivalent to (W,ρ) via the H-linear isomorphism ϕ : W →
V1 ⊕ V2 sending basis vectors to ϕ(ei) := (ei, 0). Note that ϕ(jei) = j · ϕ(ei) =
J(ei, 0) = (0, ei). Hence, ϕ is indeed bijective and

ϕ(pei) = p · ϕ(ei) = (αei, βei).

We see that

ρ̃(x)ϕ(ei) =

[
ρ1 −ρ2
ρ2 ρ1

][
ei

0

]
= (ρ1ijej , ρ2ijjej) = ϕ(ρ(x)ei).

Similarly, we have

e− ◦ s−(V, ρ, J̃) = e−(V, ρ) = (V1 ⊕ V2, ρ̃, J).

This representation is equivalent to (V, ρ, J̃) via the C-linear isomorphism ϕ : V →
V1 ⊕ V2 given as follows. Let {e1, . . . , en} be a H-basis for V . Then {e1, . . . , en} ∪
{J̃(e1), . . . , J̃(en)} is a C-basis for V . Let ϕ send basis vectors to ϕ(ei) := (ei, 0)
and ϕ(J̃(ei)) := (0, j · ei). We see that ϕ is bijective. Recall that ρ1ij and ρ2ij were
defined such that ρ(x)ei = ρ1ijej + ρ2ijj · ej . Note that j · ej = J̃(ej). Then we see

ρ̃(x)ϕ(ei) = (ρ1ijej , ρ2ijj · ej) = ϕ(ρ1ijej + ρ2ij J̃(ej)) = ϕ(ρ(x)ei),

ρ̃(x)ϕ(J̃(ei)) = (−ρ2ijej , ρ1ijj · ej) = ϕ(J̃(ρ(x)ei)) = ϕ(ρ(x)J̃(ei)),

J(ϕ(ei)) = J(ei, 0) = (0, j · ei) = ϕ(J̃(ei)),

J(ϕ(J̃(ei))) = J(0, j · ei) = (−ei, 0) = ϕ(J̃(J̃(ei))).
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Note 1.8. If (V, ρ, J) is a complex representation of quaternionic type, then dimC(V )
is even. In Proposition 1.7, we see that V has the structure of a H-vector space. Thus,
we can find a H-basis {e1, . . . , en}, which gives us a C-basis {e1, . . . , en, je1, . . . , jen}.
Thus, dimC(V ) = 2n.

We can also define functors between different types of representations.

Definition 1.9. Forgetting about various parts of the representations, we have re-
striction maps

rCR : Rep(g,C) → Rep(g,R),
rHC : Rep(g,H) → Rep(g,C),
rHR : Rep(g,H) → Rep(g,R), rHR = rCR ◦ rHC ,
r+ : Rep+(g,C) → Rep(g,C),
r− : Rep−(g,C) → Rep(g,C),

defined as follows. Given a complex representation (V, ρ), we may regard V as a
real vector space and use the same ρ. Explicitly, this means to choose a C-basis
{e1, . . . , en} for V and let U1 := spanR(e1, . . . , en) and U2 := spanR(ie1, . . . , ien). As
a real vector space, V is isomorphic to U1 ⊕U2. Let ρ1ij , ρ2ij ∈ R such that ρ(x)ei =
ρ1ijej + ρ2ijiej. As ρ(x) is C-linear, we have ρ(x)iei = iρ(x)ei = −ρ2ijej + ρ1ijiej.

Written in the R-basis, ρ(x) acts on U1 ⊕ U2 as ρ̃(x) :=

[
ρ1 −ρ2
ρ2 ρ1

]
. The functor

rCR takes (V, ρ) to (U1 ⊕ U2, ρ̃(x)). Similarly, we get rHC and rHR . Additionally, given
a representation of real or quaternionic type, we can forget about the structure map,
giving us a complex representation. These are the functors r±. Explicitly, the map
rHC = r− ◦ e− and rHR = rCR ◦ rHC .

We also have extension maps, obtained by extending the scalars on the vector
space

eCR : Rep(g,R) → Rep(g,C),
eHC : Rep(g,C) → Rep(g,H),

eHR : Rep(g,R) → Rep(g,H), eHR = eHC ◦ eCR,

defined as follows. Given a real representation (U, ρ), we take r+ ◦ e+(U, ρ). The
resulting representation is eCR(U, ρ). We view H as a right C-module via right mul-
tiplication H × C → H taking (w, v) 7→ wv. Then, given a complex representation
(V, ρ), we have eHC(V, ρ) := (H⊗C V, idH ⊗ ρ). Given a real representation (U, ρ), we
can do the same as above, taking eHR(U, ρ) := (H ⊗R U, idH ⊗ ρ). The result is the
same as the composition of the two previous maps.
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Finally, we have a conjugation map,

c : Rep(g,C) → Rep(g,C),

defined as follows. Let (V, ρ) be a complex representation. Let V be the vector space
with the same additive structure as V but scalar multiplication given by α · v := αv.
Then ρ(x) acts on V as ρ(x). Let ρ(x) := ρ(x) and c(V, ρ) := (V , ρ).

Proposition 1.10. The above functors satisfy the following relations

rCR ◦ eCR(U, ρ) ≃ (U, ρ)⊕2, eCR ◦ rCR(V, ρ) ≃ (V, ρ)⊕ c(V, ρ),

rHC ◦ eHC(V, ρ) ≃ (V, ρ)⊕ c(V, ρ), eHC ◦ rHC(W,ρ) ≃ (W,ρ)⊕2,

c ◦ eCR(U, ρ) ≃ eCR(U, ρ), rCR ◦ c(V, ρ) ≃ rCR(V, ρ),

c ◦ rHC(W,ρ) ≃ rHC(W,ρ), eHC ◦ c(V, ρ) ≃ eHC(V, ρ),

r+ ◦ e+(U, ρ) ≃ eCR(U, ρ), r− ◦ e−(W,ρ) ≃ rHC(W,ρ),

c2(V, ρ) ≃ (V, ρ).

Proof. The first equivalency is obtained via the R-linear isomorphism ϕ : R ⊗R U ⊕
iR⊗R U → U ⊕U taking ϕ(a⊗ u, ib⊗ v) := (au, bv). We see that as ρ(x) maps from
a real vector space to itself,

ϕ

([
1⊗ ρ(x) 0

0 1⊗ ρ(x)

][
a⊗ u

ib⊗ v

])
= (aρ(x)u, ibρ(x)v)

= (ρ⊕ ρ)(x)ϕ(a⊗ u, ib⊗ v).

The second equivalency is obtained via the C-linear isomorphism ϕ : V ⊕ V →
C⊗R (U1 ⊕ U2) sending the basis elements of V ⊕ V to

ϕ(ei, 0) :=
1⊗ (ei, 0)− i⊗ (0, iei)

2
,

ϕ(0, ei) :=
1⊗ (ei, 0) + i⊗ (0, iei)

2
.

We see that

1⊗

[
ρ1 −ρ2
ρ2 ρ1

]
ϕ(ei, 0) =

1⊗ (ρ1ijej , ρ2ijiej)− i⊗ (−ρ2ijej , ρ1ijiej)
2

= ϕ ((ρ⊕ ρ)(x)(ei, 0)) ,

1⊗

[
ρ1 −ρ2
ρ2 ρ1

]
ϕ(0, ei) =

1⊗ (ρ1ijej , ρ2ijiej) + i⊗ (−ρ2ijej , ρ1ijiej)
2

= ϕ ((ρ⊕ ρ)(x)(0, ei)) .
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Note that in the final equality, we have that ϕ is C-linear with respect to multiplica-
tion on V ⊕ V , so ϕ(0, ρ(x)ijej) = ρ(x)ijϕ(0, ei).

The third equivalency is obtained via the C-linear isomorphism ϕ : (C ⊗C V ) ⊕
(jC⊗C V ) → V ⊕ V taking

ϕ(1⊗ ei, 0) := (ei, 0),

ϕ(0, j ⊗ ei) := (0, ei).

We see [
ρ(x) 0

0 ρ(x)

]
· ϕ(1⊗ ei, 0) = (ρ(x)ei, 0) = ρ(x)ijϕ(1⊗ ej , 0)

= ϕ

([
1⊗ ρ(x) 0

0 1⊗ ρ(x)

][
1⊗ ei

0

])
,[

ρ(x) 0

0 ρ(x)

]
· ϕ(0, j ⊗ ei) = (0, ρ(x)ei) = ρ(x)ij · (0, ej)

= ϕ

([
1⊗ ρ(x) 0

0 1⊗ ρ(x)

] [
0 j ⊗ ei

])
.

The fourth equivalency is obtained via the H-linear isomorphism ϕ : W ⊕W →
H⊗C (V1 ⊕ V2) sending the basis elements of W ⊕W to

ϕ(ei, 0) :=
1⊗ (ei, 0)− j ⊗ (0, jei)

2
,

ϕ(0, ei) :=
i⊗ (ei, 0) + k ⊗ (0, jei)

2
.

We see that

1⊗

[
ρ1 −ρ2
ρ2 ρ1

]
ϕ(ei, 0) =

1⊗ (ρ1ijej , ρ2ijjej)− j ⊗ (−ρ2ijej , ρ1ijjej)
2

= ρ(x)ij
1⊗ (ej , 0)− j ⊗ (0, jej)

2
= ϕ((ρ⊕ ρ)(x)(ei, 0)),

1⊗

[
ρ1 −ρ2
ρ2 ρ1

]
ϕ(0, ei) =

i⊗ (ρ1ijej , ρ2ijjej) + k ⊗ (−ρ2ijej , ρ1ijjej)
2

= ρ(x)ij
i⊗ (ej , 0) + k ⊗ (0, jej)

2
= ϕ((ρ⊕ ρ)(x)(0, ei)).

Note that we use that H⊗C (V1 ⊕ V2) is a H-vector space, where we multiply on the
H factor on the left. That is, p(q⊗ (v, w)) = (pq)⊗ (v, w). Additionally, H is a right
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C-module, so if we have α ∈ C, we have (qα)⊗ (v, w) = q ⊗ α(v, w). Thus, we have
α(j ⊗ (v, w)) = (αj)⊗ (v, w) = j ⊗ α(v, w).

The fifth equivalency is obtained via the C-linear isomorphism ϕ : C ⊗R U →
C⊗R U taking ϕ(α⊗ u) := α⊗ u. Indeed, we see

ϕ(iα⊗ u) = −iϕ(α⊗ u) = i · ϕ(α⊗ u).

Furthermore, we see that

1⊗ ρ(x) · ϕ(α⊗ u) = α⊗ ρ(x)u = ϕ((1⊗ ρ(x))(α⊗ u)).

The sixth equivalency is obtained via the R-linear isomorphism ϕ : U ⊕ iU →
U ⊕ iU taking ϕ(u, iv) := (u,−iv). Let ρ(x) = ρ1+ iρ2. Then ρ(x) = ρ1− iρ2. Thus,

the representation on the first U ⊕ iU is

[
ρ1 −ρ2
ρ2 ρ1

]
as it is constructed from ρ and

the representation on the second one is

[
ρ1 ρ2

−ρ2 ρ1

]
, as it is constructed from ρ. Then

we see[
ρ1 ρ2

−ρ2 ρ1

]
ϕ(u, iv) = (ρ1u− ρ2v,−iρ2u− iρ1v) = ϕ

([
ρ1 −ρ2
ρ2 ρ1

][
u

iv

])
.

The seventh equivalency is obtained via the C-linear map ϕ : (C⊗C V )⊕ (jC⊗C
V ) → C⊗C V ⊕ jC⊗C V taking the basis vectors to

ϕ(1⊗ ei, 0) := (0,−j ⊗ ei), and ϕ(0, j ⊗ ei) := (1⊗ ei, 0).

We see[
1⊗ ρ1(x) −1⊗ ρ2(x)

1⊗ ρ2(x) 1⊗ ρ1(x)

]
· ϕ(1⊗ ei, 0) = ρ1ij · (0,−j ⊗ ej) + ρ2ij · (1⊗ ej , 0)

= ϕ

([
1⊗ ρ1(x) −1⊗ ρ2(x)

1⊗ ρ2(x) 1⊗ ρ1(x)

][
1⊗ ei

0

])
,[

1⊗ ρ1(x) −1⊗ ρ2(x)

1⊗ ρ2(x) 1⊗ ρ1(x)

]
· ϕ(0, j ⊗ ei) = ρ1ij · (1⊗ ej , 0) + ρ2ij · (0, j ⊗ ej)

= ϕ

([
1⊗ ρ1(x) −1⊗ ρ2(x)

1⊗ ρ2(x) 1⊗ ρ1(x)

][
0

j ⊗ ei

])
.
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L = R C H

(U, ρ) ∈ Irr(g,R)L eCR(U, ρ) ∈ Irr(g,C)R
(U, ρ) = rCR(V, λ),
(V, ρ) ∈ Irr(g,C)C

(U, ρ) = rCR(V, λ),
(V, ρ) ∈ Irr(g,C)H

(V, ρ) ∈ Irr(g,C)L (V, ρ) ∈ Rep+(g,C) (V, ρ) ̸≃ (V , ρ) (V, ρ) ∈ Rep−(g,C)

(W, ρ) ∈ Irr(g,H)L
(W, ρ) = eHC(V, λ),
(V, λ) ∈ Irr(g,C)R

(W, ρ) = eHC(V, λ),
(V, λ) ∈ Irr(g,C)C

rHC(W, ρ) ∈ Irr(g,C)H

Table 1: This table outlines the various types of irreducible representations of g. In words, (U, ρ) ∈
Irr(g,R)R if and only if eCR(U, ρ) ∈ Irr(g,C)R, which happens if and only if this representation is
irreducible and of real type. The other definitions are similar.

The eighth equivalency is obtained via the H-linear isomorphism ϕ : H ⊗C V →
H⊗C V taking basis vectors ϕ(1⊗ ei) := j ⊗ ei. We see

(1⊗ ρ(x)) · ϕ(1⊗ ei) = j ⊗ ρ(x)ijej = (ρ(x)ijj)⊗ ej = ϕ((1⊗ ρ(x))(1⊗ ei)).

The ninth and tenth equivalencies are just by definition.

The eleventh equivalency is obtained via the C-linear isomorphism ϕ : V → V
taking ϕ(v) := v. We see that

ρ(x) · ϕ(v) = ρ(x)v = ϕ(ρ(x)v).

2 Irreducible representations of various types

In this section, we uncover the relationship between irreducible real, quaternionic,
and complex representations. The main result is a classification of irreducible repre-
sentations.

Definition 2.1. Let Irr(g,K) for K = R,C,H be the sets of irreducible representa-
tions over K. For each L = R,C,H, we define a subset Irr(g,K)L ⊆ Irr(g,K). The
definitions of these nine subsets are given in Table 1.

We call an irreducible representation (whether real, complex, or quaternionic) in
a set with subscript R,C,H of real, complex, or quaternionic type, respectively.
Thus, we extend our use of type from just complex representations.

We show the following
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Theorem 2.2. For K = R,C,H, we have that Irr(g,K) is the disjoint union of
its subsets Irr(g,K)R, Irr(g,K)C, Irr(g,K)H. Note that some of these subsets can be
empty.

First, we need some lemmas to simplify our proof.

Lemma 2.3. A complex representation (V, ρ) is of real (resp. quaternionic) type if
and only if there exists a nonsingular symmetric (resp. skew-symmetric) g-invariant
bilinear form B : V × V → C.

Proof. Suppose that such a B : V × V → C is given. Then B(v, w) = ϵB(w, v)
for ϵ = ±1. Choose a g-invariant Hermitian inner product ⟨·, ·⟩ on V and define
f : V → V by requiring B(v, w) = ⟨v, f(w)⟩ for all v ∈ V . Hence, f is conjugate-
linear. Indeed, for all v ∈ V ,

⟨v, αf(w)− f(αw)⟩ = αB(v, w)−B(v, αw) = 0.

Hence, f(αw) = αf(w). Furthermore, we see that as B(ρ(x)v, w) = −B(v, ρ(x)w)
and ⟨ρ(x)v, w⟩ = −⟨v, ρ(x)w⟩,

⟨v, ρ(x)f(w)⟩ = −⟨ρ(x)v, f(w)⟩ = −B(ρ(x)v, w)

= B(v, ρ(x)w) = ⟨v, f(ρ(x)w)⟩.

Thus, f(ρ(x)w) = ρ(x)f(w), so f is equivariant. Finally, suppose f(w) = 0. Then
for all v ∈ V ,

B(v, w) = ⟨v, f(w)⟩ = 0.

Thus, w = 0, so f is an isomorphism (between (V, ρ) and (V , ρ)).
We see that

⟨v, f(w)⟩ = B(v, w) = ϵB(w, v) = ϵ⟨w, f(v)⟩ = ϵ⟨f(v), w⟩.

Hence,
⟨v, f2(w)⟩ = ϵ⟨f(v), f(w)⟩ = ϵ2⟨f2(v), w⟩ = ⟨f2(v), w⟩.

Therefore, we see that ϵf2 is Hermitian and positive-definite. Indeed,

⟨v, ϵf2(v)⟩ = ϵ2⟨f(v), f(v)⟩ ≥ 0. (1)

If ⟨v, ϵf2(v)⟩ = 0, then we see that f(v) = 0, so v = 0. Therefore, V can be
decomposed into the direct sum of eigenspaces Vλ of ϵf2. As ϵf2 is positive-definite
and Hermitian, we have all the eigenvalues are positive real numbers.

Let v ∈ Vλ. Then

ϵf2(ρ(x)v) = ρ(x)ϵf2(v) = λρ(x)v,

ϵf2(f(v)) = f(ϵf2(v)) = f(λv) = λf(v).

10



Thus, the eigenspaces are g-invariant and invariant under f . Define h : V → V by
taking v ∈ Vλ to h(v) :=

√
λv and extend linearly (take a basis of each eigenspace to

get a basis on V ). We see that for all v ∈ Vλ, as f(v) ∈ Vλ as well,

h(f(v)) =
√
λf(v) = f(

√
λv) = f(h(v).

Furthermore, we see that for all v ∈ Vλ, as ρ(x)v ∈ Vλ as well,

h(ρ(x)v) =
√
λρ(x)v = ρ(x)h(v).

Hence, h is equivariant. Additionally, for all v ∈ Vλ,

h2(v) = λv = ϵf2(v).

Therefore, h2 = ϵf2.
Define J : V → V by J := h ◦ f−1. As f is conjugate-linear and h linear, we have

J is conjugate-linear. Furthermore, we see from above that

J(ρ(x)v) = h(f−1(ρ(x)v)) = h(ρ(x)f−1(v)) = ρ(x)J(v).

Thus, J is equivariant. Finally, we see that

J2 = h ◦ f−1 ◦ h ◦ f−1 = h2 ◦ f−2 = ϵ · idV .

Therefore, if ϵ = 1, then we have a real structure and if ϵ = −1, then we have a
quaternionic structure.

Conversely, suppose V has a structure map J : V → V such that J2 = ϵ · idV . If
ϵ = 1, then V ≃ C ⊗R V+, where V+ is the +1-eigenspace of J . Any non-singular,
g-invariant, symmetric, R-bilinear form on V+ can be extended to a C-bilinear form
B on V , which is still non-singular, g-invariant, and symmetric.

If ϵ = −1, then consider V as a H-module, where the action of j being that of J .
Then V carries a g-invariant, symplectic inner product ⟨·, ·⟩. Write

⟨u, v⟩ = H(u, v) +B(u, v)j,

where H(u, v), B(u, v) ∈ C. As λ⟨u, v⟩ = ⟨λu, v⟩ and ⟨u, λv⟩ = ⟨u, v⟩λ for λ ∈ H, we
see that for α ∈ C,

H(u, αv + w) +B(u, αv + w)j = ⟨u, αv + w⟩ = ⟨u,w⟩+ ⟨u, v⟩α
= H(u,w) +H(u, v)α+B(u,w)j +B(u, v)jα.

Noting that jα = αj and

H(αu+ v, w) +B(αu+ v, w)j = ⟨αu+ v, w⟩ = α⟨u,w⟩+ ⟨v, w⟩
= αH(u,w) +H(v, w) + αB(u,w)j +B(v, w)j,
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we see that B is C-bilinear.
As ⟨u, v⟩ = ⟨v, u⟩, we have

H(u, v) +B(u, v)j = ⟨u, v⟩ = ⟨v, u⟩ = H(v, u) +B(v, u)j

= H(v, u)−B(v, u)j.

Hence, B is skew-symmetric.
Suppose B(u, v) = 0 for all u ∈ V . Then ⟨u, v⟩ ∈ C for all u ∈ V . As,

⟨ju, v⟩ = j⟨u, v⟩,

we see that ⟨u, v⟩ = 0 for all u ∈ V . As symplectic inner products are non-singular,
we have v = 0, so B is non-singular. Finally, we see that

H(ρ(x)u, v) +B(ρ(x)u, v)j = ⟨ρ(x)u, v⟩ = −⟨u, ρ(x)v⟩
= −H(u, ρ(x)v)−B(u, ρ(x)v)j.

Thus, B is g-invariant.

Definition 2.4. We say a complex representation is self-dual if (V, ρ) ≃ (V , ρ).

Definition 2.5. Suppose g is a semi-simple Lie algebra with representation (V, ρ).
The following representation (V ∗, ρ∗) is known as the dual representation. Here
V ∗ := Hom(V,C) and ρ∗(x)f(v) := −f(ρ(x)v).

Lemma 2.6. The pair (V ∗, ρ∗) is indeed a representation.

Proof. We see that

([ρ∗(x), ρ∗(y)]f)(v) = −ρ∗(y)f(ρ(x)v) + ρ∗(x)f(ρ(y)v) = f([ρ(y), ρ(x)]v)

= −f(ρ([x, y])v) = ρ∗([x, y])f(v)

Therefore, we have a representation.

Recall the definition of the representation (V , ρ) given in Definition 1.9.

Lemma 2.7. Given an g-invariant inner product on V , we have that (V ∗, ρ∗) ≃
(V , ρ).

Proof. Consider ϕ : V → V ∗ taking ϕ(v) 7→ ⟨·, v⟩. This map is a C-linear isomor-
phism. Furthermore, we see that

ϕ(ρ(x) · v)(w) = ϕ(ρ(x)v)(w) = ⟨w, ρ(x)v⟩ = −⟨ρ(x)w, v⟩
= −ϕ(v)(ρ(x)w) = ρ∗(x)ϕ(v)(w).
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Lemma 2.8. Given a representation (V, ρ), ((V ∗)∗, (ρ∗)∗) is isomorphic to (V, ρ).

Proof. Let {v1, . . . , vn} be a basis for V and ⟨·, ·⟩ an inner product on V . Construct
f : V → (V ∗)∗ taking v 7→ (v∗)∗. We see that for all x ∈ g and ϕ ∈ V ∗ we have

(ρ∗)∗(x)f(v)(ϕ) = (ρ∗)∗(x)(v∗)∗(ϕ) = −(v∗)∗(ρ∗(x)ϕ)

= −(ρ∗(x)ϕ)(v) = ϕ(ρ(x)v) = f(ρ(x)v)(ϕ).

Thus, the representations are isomorphic.

Lemma 2.9. Let (V, ρ) ∈ Irr(g,C) be self-dual. Then it is of real or quaternionic
type, but not both.

Proof. Let B : V → V ∗ ≃ V give an equivalence (V, ρ) ≃ (V , ρ) ≃ (V ∗, ρ∗). That
is, B is equivariant and a linear isomorphism. We can think of B as a non-singular,
bilinear form on V . Consider B± := B ± BT , where BT (u, v) := B(v, u). At least
one of these is non-zero, or else B = 0.

Notice that

B+(v, u) = B(v, u) +B(u, v) = B+(u, v),

B−(v, u) = B(v, u)−B(u, v) = −B−(u, v).

Thus, B+ is symmetric and B− is skew-symmetric. Furthermore, as B is equivariant,
we have that B(ρ(x)u) = ρ∗(x)B(u). Evaluating at v, we see

B(ρ(x)u, v) = −B(u, ρ(x)v).

Thus, B is g-invariant.
Suppose B+ is non-zero. Then we have a nonsingular, symmetric, bilinear, g-

invariant inner product on V . By Lemma 2.3, (V, ρ) is of real type.
Suppose B− is non-zero. Then we have a nonsingular, skew-symmetric, bilinear,

g-invariant inner product on V . By Lemma 2.3, (V, ρ) is of quaternionic type.
Suppose (V, ρ) is of both types. Then there exists nonsingular, bilinear, g-

invariant inner products A,C on V , that are symmetric and skew-symmetric, re-
spectively. Let f : V → V ∗ and g : V → V ∗ be given by f(u)(v) := A(u, v) and
g(u)(v) := C(u, v). As A and C are nonsingular and bilinear, f and g are isomor-
phisms. Furthermore, we see

f(ρ(x)u)(v) = A(ρ(x)u, v) = −A(u, ρ(x)v) = ρ∗(x)f(u)(v).

Thus, f is equivariant, and g is similarly. By Schur’s Lemma, any two isomorphisms
are non-zero multiples of each other, so A = αC for some α ̸= 0. Hence, A and C
are both symmetric and skew-symmetric, so they are both zero, contradiction!
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We are now able to prove Theorem 2.2.

Proof of Theorem 2.2. We divide the proof into three parts, one for each K =
R,C,H.

Let (V, ρ) ∈ Irr(g,C). If the representation is of real or quaternionic type, then
J : V → V is a structure map with J2 = ±idV . In either case, J is conjugate-linear,
so thinking of it as a map V → V , we see that it is linear. Furthermore, we have
that J is equivariant, so

J(ρ(x)v) = ρ(x)J(v) = ρ(x) · J(v).

As J2 = ±id, we have that it is bijective. Therefore, as a map V → V , J is an iso-
morphism and it provides an equivalence (V, ρ) ≃ (V , ρ). Hence, if the representation
is of real or quaternionic type, it cannot be of complex type.

Suppose (V, ρ) is self-dual. By Lemma 2.9, we see that (V, ρ) is of real or quater-
nionic type, but not both. Otherwise, (V, ρ) is not self-dual and is of complex type.

Let (U, ρ) ∈ Irr(g,R). Denote e := eCR and r := rCR. As e = r+◦e+, we have e(U, ρ)
is of real type, as there is a real structure on e(U, ρ). As such, if e(U, ρ) is irreducible,
then e(U, ρ) ∈ Irr(g,C)R, so (U, ρ) ∈ Irr(g,R)R. If e(U, ρ) is not irreducible, let us
decompose it in terms of irreducible summands as e(U, ρ) =

⊕t
j=1(Vj , ρj), where

(Vj , ρj) ∈ Irr(g,C) and t ≥ 2. Then

(U, ρ)⊕ (U, ρ) = r ◦ e(U, ρ) =
t⊕

j=1

r(Vj , ρj).

As t ≥ 2 and (U, ρ) is irreducible, we have t = 2 and r(Vj , ρj) = (U, ρ) for j = 1, 2.
Then for j = 1, 2

(V1, ρ1)⊕ (V2, ρ2) = e(U, ρ) = e ◦ r(Vj , ρj) = (Vj , ρj)⊕ (Vj , ρj).

Thus, we must have (V1, ρ1) ≃ (V2, ρ2) and vice versa.
If (V1, ρ1) is not self-dual, then we see (U, ρ) ∈ Irr(g,R)C. Otherwise, we have

a self-dual, irreducible, complex representation. Hence, (V1, ρ1) is of either real or
quaternionic type. If it is of real type, then (V1, ρ1) ∈ Rep+(g,C) so (X,λ) :=
s+(V1, ρ1) ∈ Rep(g,R). But then e+(X,λ) = e+ ◦ s+(V1, ρ1) ≃ (V1, ρ1), so

e(X,λ) = r+ ◦ e+(X,λ) ≃ r+(V1, ρ1) = (V1, ρ1).

Thus,
(U, ρ) = r(V1, ρ1) ≃ r ◦ e(X,λ) = (X,λ)⊕ (X,λ).

But (U, ρ) is irreducible, contradiction! Thus, (V1, ρ1) is of quaternionic type and
(U, ρ) ∈ Irr(g,R)H.
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Note that (U, ρ) cannot be in the intersection of any two of these sets. If it is the
restriction of an irreducible complex representation, that representation cannot be
both not self-dual and of quaternionic type. Furthermore, if (U, ρ) is the restriction
of an irreducible complex representation (V, λ), then e(U, ρ) = (V, λ)⊕ (V , λ), which
is not irreducible.

Finally, let (W,ρ) ∈ Irr(g,H). Let r := rHC and e := eHC . As r = r−◦e−, r(W,ρ) has
a quaternionic structure. As such, if r(W,ρ) is irreducible, then r(W,ρ) ∈ Irr(g,C)H,
so (W,ρ) ∈ Irr(g,H)H. If r(W,ρ) is not irreducible, let us decompose it in terms
of irreducible summands as r(W,ρ) =

⊕t
j=1(Vj , ρj), where (Vj , ρj) ∈ Irr(g,C) and

t ≥ 2. Then

(W,ρ)⊕ (W,ρ) = e ◦ r(W,ρ) =
t⊕

j=1

e(Vj , ρj).

As t ≥ 2 and (W,ρ) is irreducible, we have t = 2 and e(Vj , ρj) = (W,ρ) for j = 1, 2.
Then for j = 1, 2

(V1, ρ1)⊕ (V2, ρ2) = r(W,ρ) = r ◦ e(Vj , ρj) = (Vj , ρj)⊕ (Vj , ρj).

Thus, we must have (V1, ρ1) ≃ (V2, ρ2) and vice versa.
If (V1, ρ1) is not self-dual, then we see that (W,ρ) ∈ Irr(g,H)C. Otherwise, we

have a self-dual, irreducible, complex representation. Hence, (V1, ρ1) is of either real
or quaternionic type. If it is of quaternionic type, then (V1, ρ1) ∈ Rep−(g,C), so
(X,λ) := s−(V1, ρ1) ∈ Rep(g,H). But then e−(X,λ) = e− ◦ s−(V1, ρ1) ≃ (V1, ρ1), so

r(X,λ) = r− ◦ e−(X,λ) ≃ r−(V1, ρ1) = (V1, ρ1).

Thus,
(W,ρ) = e(V1, ρ1) ≃ e ◦ r(X,λ) = (X,λ)⊕ (X,λ).

But (W,ρ) is irreducible, contradiction! Therefore, (V1, ρ1) is of real type and (W,ρ) ∈
Irr(g,H)R.

Note that (W,ρ) cannot be in the intersection of any two of these sets. If it is
the extension of an irreducible complex representation, that representation cannot
be both not self-dual and of real type. Furthermore, if (W,ρ) is the extension of an
irreducible complex representation (V, λ), then r(W,ρ) = (V, λ) ⊕ (V , λ), which is
not irreducible.

We have proven the first six of the following implications. The remaining three
are proven similarly to each other.

Proposition 2.10. We have the following relationships between irreducible repre-
sentations.
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(1) (U, ρ) ∈ Irr(g,R)R ⇒ eCR(U, ρ) = (V, λ), for (V, λ) ∈ Irr(g,C)R,
(2) (U, ρ) ∈ Irr(g,R)C ⇒ eCR(U, ρ) = (V, λ)⊕ (V , λ), for (V, λ) ∈ Irr(g,C)C,
(3) (U, ρ) ∈ Irr(g,R)H ⇒ eCR(U, ρ) = (V, λ)⊕ (V, λ), for (V, λ) ∈ Irr(g,C)H,
(4) (W, ρ) ∈ Irr(g,H)R ⇒ rHC(W, ρ) = (V, λ)⊕ (V, λ), for (V, λ) ∈ Irr(g,C)R,
(5) (W, ρ) ∈ Irr(g,H)C ⇒ rHC(W, ρ) = (V, λ)⊕ (V , λ), for (V, λ) ∈ Irr(g,C)C,
(6) (W, ρ) ∈ Irr(g,H)H ⇒ rHC(W, ρ) = (V, λ), for (V, λ) ∈ Irr(g,C)H,

(7) (V, ρ) ∈ Irr(g,C)R ⇒
rCR(V, ρ) = (U, λ)⊕ (U, λ), for (U, λ) ∈ Irr(g,R)R,

eHC(V, ρ) = (W,λ), for (W,λ) ∈ Irr(g,H)R,

(8) (V, ρ) ∈ Irr(g,C)C ⇒
rCR(V, ρ) = (U, λ) = rCR(V , ρ), for (U, λ) ∈ Irr(g,R)C,
eHC(V, ρ) = (W,λ) = eHC(V , ρ), for (W,λ) ∈ Irr(g,H)C,

(9) (V, ρ) ∈ Irr(g,C)H ⇒
rCR(V, ρ) = (U, λ), for (U, λ) ∈ Irr(g,R)H,

eHC(V, ρ) = (W,λ)⊕ (W,λ), for (W,λ) ∈ Irr(g,H)H.

Proof. (1) This is the definition of being in Irr(g,R)R.

(2) By definition, we have (U, ρ) = rCR(V, λ) for some (V, λ) ∈ Irr(g,C)C. By Propo-
sition 1.10, eCR ◦ rCR ≃ 1⊕ c.

(3) By definition, we have (U, ρ) = rCR(V, λ) for some (V, λ) ∈ Irr(g,C)H. By
Proposition 1.10, eCR◦rCR ≃ 1⊕c and we note that representations of quaternionic
type are self-dual.

(4) By definition, we have (W,ρ) = eHC(V, λ) for some (V, λ) ∈ Irr(g,C)R. By
Proposition 1.10, rHC ◦ eHC ≃ 1⊕ c and we note that representations of real type
are self-dual.

(5) By definition, we have (W,ρ) = eHC(V, λ) for some (V, λ) ∈ Irr(g,C)C. By
Proposition 1.10, rHC ◦ eHC ≃ 1⊕ c.

(6) This is the definition of being in Irr(g,H)H.

(7) Suppose (V, ρ) ∈ Irr(g,C)R. Then it belongs to Rep+(g,C), so let (U, λ) :=
s+(V, ρ) ∈ Rep(g,R). We have that e+(U, λ) ≃ (V, ρ), so

eCR(U, λ) = r+ ◦ e+(U, λ) ≃ r+(V, ρ) = (V, ρ).

Thus,
rCR(V, ρ) ≃ rCR ◦ eCR(U, λ) = (U, λ)⊕ (U, λ).

Let us decompose (U, λ) as (U, λ) =
⊕t

j=1(Uj , λj), where t ≥ 1 and (Uj , λj) ∈
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Irr(g,R). We see that

(V, ρ) ≃
t⊕

j=1

eCR(Uj , λj).

As (V, ρ) is irreducible, we have t = 1, so (U, λ) ∈ Irr(g,R)R, proving the first
part.

Let (W,λ) := eHC(V, ρ). If we prove that (W,λ) is irreducible, then we have
proven the result. Suppose not, then let us decompose it as (W,λ) =

⊕t
j=1(Wj , λj),

where t ≥ 2 and (Wj , λj) ∈ Irr(g,H). We see that as (V, ρ) is of real type,

(V, ρ)⊕ (V, ρ) = rHC ◦ eHC(V, ρ) =
t⊕

j=1

rHC(Wj , λj).

As t ≥ 2 and (V, ρ) is irreducible, we see that t = 2 and rHC(Wj , λj) = (V, ρ)
for j = 1, 2. We know from above that if (Wj , ρj) is of real or complex type,
then (V, ρ) = rHC(Wj , ρj) is not irreducible, but it is. Thus, (Wj , ρj) must be
of quaternionic type. But then (V, ρ) = rHC(Wj , ρj) is of real and quaternionic
type, which is not possible. Contradiction! Therefore, (W,λ) is irreducible.

(8) Suppose (V, ρ) ∈ Irr(g,C)C. Let (U, λ) := rCR(V, ρ). If (U, ρ) is irreducible, then
we have proven the result, as

rCR(V , ρ) = rCR ◦ c(V, ρ) = rCR(V, ρ) = (U, λ).

Suppose not, then let us decompose it as (U, λ) =
⊕t

j=1(Uj , λj), where t ≥ 2
and (Uj , λj) ∈ Irr(g,R). We see that

(V, ρ)⊕ (V , ρ) = eCR ◦ rCR(V, ρ) =
t⊕

j=1

eCR(Uj , λj).

As (V, ρ) and its dual are irreducible (see the Dual Representation document)
and t ≥ 2, we have t = 2, so without loss of generality, eCR(U1, λ1) = (V, ρ) and
eCR(U2, λ2) = (V , ρ). As (U1, λ1) is irreducible, if it is of complex or quaternionic
type, then (V, ρ) = eCR(U1, ρ1) is not irreducible, but it is. Thus, (U1, ρ1) must
be of real type. But then (V, ρ) = eCR(U1, ρ1) is of real and complex type, which
is not possible. Contradiction! Therefore, (U, λ) is irreducible.

Let (W,λ) := eHC(V, ρ). If (W,ρ) is irreducible, then we have proven the result,
as

eHC(V , ρ) = eHC ◦ c(V, ρ) = eHC(V, ρ) = (W,λ).
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Suppose not, then let us decompose it as (W,λ) =
⊕t

j=1(Wj , λj), where t ≥ 2
and (Wj , λj) ∈ Irr(g,H). We see that

(V, ρ)⊕ (V , ρ) = rHC ◦ eHC(V, ρ) =
t⊕

j=1

rHC(Wj , λj).

As (V, ρ) and its dual are irreducible (see the Dual Representation document)
and t ≥ 2, we have t = 2, so without loss of generality, rHC(W1, λ1) = (V, ρ) and
rHC(W2, λ2) = (V , ρ). As (W1, λ1) is irreducible, if it is of complex or real type,
then (V, ρ) = rHC(W1, ρ1) is not irreducible, but it is. Thus, (W1, ρ1) must be of
quaternionic type. But then (V, ρ) = rHC(U1, ρ1) is of quaternionic and complex
type, which is not possible. Contradiction! Therefore, (W,λ) is irreducible.

(9) Suppose (V, ρ) ∈ Irr(g,C)H. Then it belongs to Rep−(g,C), so let (W,λ) :=
s−(V, ρ) ∈ Rep(g,H). We have that e−(W,λ) ≃ (V, ρ), so

rHC(W,λ) = r− ◦ e−(W,λ) ≃ r−(V, ρ) = (V, ρ).

Thus,
eHC(V, ρ) ≃ eHC ◦ rHC(W,λ) = (W,λ)⊕ (W,λ).

Let us decompose (W,λ) as (W,λ) =
⊕t

j=1(Wj , λj), where t ≥ 1 and (Wj , λj) ∈
Irr(g,H). We see that

(V, ρ) ≃
t⊕

j=1

rHC(Wj , λj).

As (V, ρ) is irreducible, we have t = 1, so (W,λ) ∈ Irr(g,H)H, proving the first
part.

Let (U, λ) := rCR(V, ρ). If we prove that (U, λ) is irreducible, then we have proven
the result. Suppose not, then let us decompose it as (U, λ) =

⊕t
j=1(Uj , λj),

where t ≥ 2 and (Uj , λj) ∈ Irr(g,R). We see that as (V, ρ) is of quaternionic
type,

(V, ρ)⊕ (V, ρ) = eCR ◦ rCR(V, ρ) =
t⊕

j=1

eCR(Uj , λj).

As t ≥ 2 and (V, ρ) is irreducible, we see that t = 2 and eCR(Uj , λj) = (V, ρ)
for j = 1, 2. We know from above that if (Uj , ρj) is of quaternionic or complex
type, then (V, ρ) = eCR(Wj , ρj) is not irreducible, but it is. Thus, (Uj , ρj) must
be of real type. But then (V, ρ) = eCR(Uj , ρj) is of real and quaternionic type,
which is not possible. Contradiction! Therefore, (U, λ) is irreducible.
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Corollary 2.11. For all (V, ρ) ∈ Irr(g,C)R, (V, ρ) ⊕ (V , ρ) with (V, ρ) ∈ Irr(g,C)C,
and (V, ρ)⊕2 with (V, ρ) ∈ Irr(g,C)H, we can choose real matrices (of the same di-
mension) inducing irreducible real representations whose extensions are the above
representations. Furthermore, all irreducible real representations are constructed this
way.

For all (V, ρ)⊕2 with (V, ρ) ∈ Irr(g,C)R, (V, ρ)⊕(V , ρ) with (V, ρ) ∈ Irr(g,C)C, and
(V, ρ) ∈ Irr(g,C)H, we can choose quaternionic matrices (of half the dimension) that
give rise to irreducible real representations whose restrictions give the above repre-
sentations. Furthermore, all irreducible quaternionic representations are constructed
this way.

Proof. If we start with an irreducible real representation (U, ρ), then, by Proposi-
tion 2.10, its extension is of the form in the statement of the proposition. Similarly,
if we start with an irreducible quaternionic representation (W,ρ), then its restric-
tion is of the form in the statement of the proposition. Thus, it remains to show
that for every one of the above representations, we can find an irreducible real or
quaternionic representation whose extension or restriction, respectively, gives back
the representation.

If we take (V, ρ) ∈ Irr(g,C)R, then as this representation is of real type and
irreducible, let (U, λ) := s+(V, ρ). Consider

eCR(U, λ) = r+ ◦ e+ ◦ s+(V, ρ) ≃ r+(V, ρ) = (V, ρ).

Thus, (U, λ) must be irreducible and its extension is (V, ρ).
If we take (V, ρ)⊕ (V , ρ) with (V, ρ) ∈ Irr(g,C)C, then as (V, ρ) is of complex type

and irreducible, let (U, λ) := rCR(V, ρ). By Proposition 2.10, we have that (U, λ) is
irreducible (and of complex type). Furthermore, we have that

eCR(U, λ) = eCR ◦ rCR(V, ρ) = (V, ρ)⊕ (V , ρ).

Hence, we have an irreducible real representation whose extension is (V, ρ)⊕ (V , ρ).
If we take (V, ρ)⊕ (V, ρ) with (V, ρ) ∈ Irr(g,C)H, then as (V, ρ) is of quaternionic

type and irreducible, let (U, λ) := rCR(V, ρ). By Proposition 2.10, we have that (U, λ)
is irreducible (and of quaternionic type). Furthermore, we have that

eCR(U, λ) = eCR ◦ rCR(V, ρ) = (V, ρ)⊕ (V, ρ).

Hence, we have an irreducible real representation whose extension is (V, ρ)⊕ (V, ρ).
If we take (V, ρ) ∈ Irr(g,C)H, then as this representation is of quaternionic type

and irreducible, let (W,λ) := s−(V, ρ). Consider

rHC(W,λ) = r− ◦ e− ◦ s−(V, ρ) ≃ r−(V, ρ) = (V, ρ).
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Thus, (W,λ) must be irreducible and its restriction is (V, ρ).
If we take (V, ρ)⊕ (V , ρ) with (V, ρ) ∈ Irr(g,C)C, then as (V, ρ) is of complex type

and irreducible, let (W,λ) := eHC(V, ρ). By Proposition 2.10, we have that (W,λ) is
irreducible (and of complex type). Furthermore, we have that

rHC(W,λ) = rHC ◦ eHC(V, ρ) = (V, ρ)⊕ (V , ρ).

Hence, we have an irreducible quaternionic representation whose restriction is (V, ρ)⊕
(V , ρ).

If we take (V, ρ) ⊕ (V, ρ) with (V, ρ) ∈ Irr(g,C)R, then as (V, ρ) is of real type
and irreducible, let (W,λ) := eHC(V, ρ). By Proposition 2.10, we have that (W,λ) is
irreducible (and of real type). Furthermore, we have that

rHC(W,λ) = rHC ◦ eHC(V, ρ) = (V, ρ)⊕ (V, ρ).

Hence, we have an irreducible quaternionic representation whose restriction is (V, ρ)⊕
(V, ρ).

Note that the previous corollary tells us exactly how to get the irreducible real
and quaternionic representations from the complex ones.

The next proposition gives us a simple characterization of the sets Irr(g,R)L. It
tells us that the endomorphism algebra determines the type of an irreducible real
representation.

Theorem 2.12. The endomorphism algebra Homg(U,U) of (U, ρ) ∈ Irr(g,R) is iso-
morphic to L if and only if (U, ρ) ∈ Irr(g,R)L.

Proof. Every 0 ̸= ϕ ∈ Homg(U,U) is invertible by Schur’s Lemma. Hence, the
endomorphism algebra is a division algebra over R, so it is isomorphic to R,C,H.

Suppose that Homg(U,U) ≃ C. Then C acts on (U, ρ) so (U, ρ) = rCR(V, λ)
for some irreducible (V, λ) (if (V, λ) were not irreducible, then so too would be its
restriction, (U, λ)). If (V, ρ) is of real type, then Proposition 2.10 tells us that (U, ρ) =
rCR(V, λ) is not irreducible, but it is. Thus, (U, ρ) is of complex or quaternionic
type. If it were of quaternionic type, then eHC(V, ρ) = (W,µ) ⊕ (W,µ) for some
(W,µ) ∈ Irr(g,H)H. But then, as (V, λ) is of quaternionic type

rHC(W,µ)⊕ rHC(W,µ) = rHC ◦ eHC(V, λ) = (V, λ)⊕ (V, λ).

Hence, (V, λ) = rHC(W,µ), so (U, ρ) = rHR(W,µ). Thus, H is contained in Homg(U,U),
which it is not. Thus, (V, λ) is of complex type, so (U, ρ) is too.

Suppose that Homg(U,U) ≃ H. Then H acts on (U, ρ) so (U, ρ) = rHR(W,µ), for
some (W,µ) irreducible (for the same reason as above). From Proposition 2.10, we
see that as rHR = rCR ◦ rHC , if (W,µ) is of real or complex type, then (U, ρ) = rHR(W,µ)
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is not irreducible, but it is. Thus, (W,µ) is of quaternionic type. Hence, rHC(W,µ) is
of quaternionic type and irreducible, so (U, ρ) = rCR ◦ rHC(W,µ) is also of quaternionic
type.

Finally, suppose that Homg(U,U) ≃ R. Then (U, ρ) is not of the form rCR(V, ρ) for
(V, ρ) irreducible and of complex or quaternionic type, otherwise C ⊆ Homg(U,U).
Thus, we must have, by Theorem 2.2, that (U, ρ) is of real type.

3 Classifying Representations

In this section, we determine which irreducible, complex representations of sp(1) are
of real, complex, and quaternionic type. We find that this Lie algebra admits no
complex type representations, so all their representations are self-dual.

The irreducible, complex representation (Vn, ρn) of su(2) is explicitly given as
follows.

Definition 3.1. Let Vn be the space of homogeneous polynomials in X,Y of degree
n − 1. Note that dim(Vn) = n. We view polynomials as functions on C2. Consider
ρn : su(2) → gl(Vn) given by

ρn(υ) :=
[
X Y

]
υ

[
∂
∂X
∂
∂Y

]
.

We see that ρn(υ) : Vn → Vn.

Lemma 3.2. The pair (Vn, ρn) is a representation of sp(1).

Proof. We see that ρn is linear, so we need only check it is a Lie algebra homomor-
phism. We see

[ρn(υ), ρn(τ)] =

[[
X Y

]
υ

[
∂
∂X
∂
∂Y

]
,
[
X Y

]
τ

[
∂
∂X
∂
∂Y

]]
.
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We see that[
X Y

]
υ

[
∂
∂X
∂
∂Y

] [
X Y

]
τ

[
∂
∂X
∂
∂Y

]
=
[
X Y

]
υ

([
∂
∂X
∂
∂Y

] [
X Y

])
τ

[
∂
∂X
∂
∂Y

]

+
[
X Y

]
υ

[
X ∂

∂X Y ∂
∂X

X ∂
∂Y Y ∂

∂Y

]
τ

[
∂
∂X
∂
∂Y

]

=
[
X Y

]
υτ

[
∂
∂X
∂
∂Y

]

+
[
X Y

]
υ

[
X ∂

∂X Y ∂
∂X

X ∂
∂Y Y ∂

∂Y

]
τ

[
∂
∂X
∂
∂Y

]

Substituting, we see that

[ρn(υ), ρn(τ)] =
[
X Y

]
[υ, τ ]

[
∂
∂X
∂
∂Y

]

+
[
X Y

](
υ

[
X ∂

∂X Y ∂
∂X

X ∂
∂Y Y ∂

∂Y

]
τ − τ

[
X ∂

∂X Y ∂
∂X

X ∂
∂Y Y ∂

∂Y

]
υ

)[
∂
∂X
∂
∂Y

]
.

Computing the final term for arbitrary υ, τ ∈ su(2), we see that it vanishes. Thus,
we are left with

[ρn(υ), ρn(τ)] = ρn([υ, τ ]).

That is, we have a representation.

Note 3.3. Using the basis of su(2) given by υ1 :=
1
2

[
i 0

0 −i

]
, υ2 :=

1
2

[
0 1

−1 0

]
, and

υ3 :=
1
2

[
0 i

i 0

]
, we find

ρn(υ1) =
i

2
X

∂

∂X
− i

2
Y

∂

∂Y
,

ρn(υ2) =
1

2
X

∂

∂Y
− 1

2
Y

∂

∂X
,

ρn(υ3) =
i

2
X

∂

∂Y
+
i

2
Y

∂

∂X
.

Lemma 3.4. This representation is irreducible.
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Proof. Consider the basis {Xn−1, . . . , XjY n−1−j , . . . , Y n−1} of Vn. We compute the

Casimir operator in this basis and show that it is n2−1
4 In. Note that as sp(1) is rank

one, the Casimir operator determines the representation completely.
We see that for j ∈ {0, . . . , n− 1}, we have

ρn(υ1)X
jY n−1−j =

i

2
(2j − n+ 1)XjY n−1−j ,

ρn(υ2)X
jY n−1−j =

1

2
(n− 1− j)Xj+1Y n−2−j − 1

2
jXj−1Y n−j ,

ρn(υ3)X
jY n−1−j =

i

2
(n− 1− j)Xj+1Y n−2−j +

i

2
jXj−1Y n−j .

Note that the coefficients vanish when we would get elements not in our basis.
Written as matrices in the aforementioned basis,

ρn(υ1) =
i

2


n− 1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 −n+ 1

 ,

ρn(υ2) =
1

2



0 1 0 · · · 0

−n+ 1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . n− 1

0 · · · 0 −1 0


,

ρn(υ3) =
i

2



0 1 0 · · · 0

n− 1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . n− 1

0 · · · 0 1 0


.

The Casimir operator ϕ = −
∑3

j=1 ρn(υj)
2 is then exactly n2−1

4 In, the Casimir
operator of the irreducible, complex n-dimensional representation.

Following Itzkowitz et al., we now find real and quaternionic structures for dif-
ferent values of n [IRS91].
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Proposition 3.5. For n even, (Vn, ρn) is quaternionic type. For n odd, it is real
type.

Note 3.6. As all irreducible, complex representations are of real or quaternionic
type, they are all self-dual. In particular, we have

Irr(sp(1),C)R = {(Vn, ρn) | n odd},
Irr(sp(1),C)C = ∅,
Irr(sp(1),C)H = {(Vn, ρn) | n even}.

Thus, by Corollary 2.11, for n odd or divisible by four, there is a unique irreducible
real n-representation (Rn, ϱn) whose complexification is (Vn, ρn) when n is odd or
(Vn/2, ρn/2)

⊕2) when n is divisible by four.
Moreover, when restricting the scalars of an irreducible quaternionic representa-

tion to C, the complex representation is isomorphic to (Vn, ρn) for some n even or
(Vn, ρn)

⊕2 for some n odd.

Proof. Define Jn : Vn → Vn as follows. Given P (X,Y ) =
∑n−1

j=0 ajX
jY n−1−j , let

P (X,Y ) :=
∑n−1

j=0 ajX
jY n−1−j . Then define Jn(P (X,Y )) := P (−Y,X), which sim-

plifies to Jn(P (X,Y )) =
∑n−1

j=0 aj(−Y )jXn−1−j . Note that Jn is conjugate-linear.

We see that JnX
jY n−1−j = (−1)jXn−1−jY j . Writing Jn in the same basis as the

ρn(υi), we find

Jn =


0 · · · 0 1
... . .

.
. .
.

0

0 . .
.

. .
. ...

(−1)n−1 0 · · · 0

 .
Recalling that Jn is conjugate-linear, we see that Jn commutes with the ρn(υi).
Furthermore, we see that

J2
n(P (X,Y )) = Jn(P (−Y,X)) = P (−X,−Y ) = (−1)n−1P (X,Y ),

recalling that P is a homogeneous degree n− 1 polynomial. Therefore, if n is even,
then Jn is a quaternionic structure and if n is odd, it is a real structure.

Consider Corollary 2.11. As we have no complex type representations, we see
that for (Vn, ρn) with n odd and (Vn, ρn)⊕ (Vn, ρn) with n even, we can choose real
matrices (of the same dimension) inducing irreducible real representations and these
are all the irreducible real representations. Additionally, for (Vn, ρn) with n even
and (Vn, ρn)⊕ (Vn, ρn) with n odd, we can choose quaternionic matrices (of half the
dimension) inducing irreducible quaternionic representations and these are all the
irreducible quaternionic representations.
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