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My research interests involve Lie theory, representation theory, moduli spaces, and gauge theory—specifically

instantons and monopoles. I study gauge theories arising from particle physics that are interesting from a geometric

and topological perspective. My results come from applying Lie theory to group actions on moduli spaces, obtaining

representations of Lie algebras. Going forward, my main research directions involve generalizing my work to

infinite dimensions, studying monopoles using topological recursion, and examining geodesic submanifolds of

moduli spaces. Below, I describe my main results before going into my research directions in more detail.

Main Results

Continuous symmetries
Topological solitons are gauge-theoretic objects that often satisfy complicated non-linear constraints. These objects

have a long history filled with many applications to physics and deep mathematical properties. In fact, the subject has

matured to the point that it is the sole focus of multiple textbooks [MS04; Man22]. Examples of solitons help us

better understand the properties of these real-world objects but are hard to find due to the non-linear constraints.

Skyrmions and magnetic monopoles are two examples of topological solitons modelling important real world

phenomena. Skyrmions model nuclei, and by studying their dynamics, we can model important nuclear reactions

like that of Boron Neutron Capture Therapy (BNCT), which is used to treat inoperable cancers. Magnetic

monopoles are hypothetical particles that are sources of magnetic charge, a magnetic analogue to electrons. To this

day, no one has observed a monopole in nature [Col23], however, it is predicted that they were plentiful in the early

universe [Pre84]. In fact, due to the integrality of Chern numbers, the existence of a single magnetic monopole in the

universe would explain the quantization of electric charge. Moreover, the lack of detection of magnetic monopoles

in the universe was the impetus for the inflationary model of cosmology.

Broadly speaking, gauge theory involves two ingredients: objects (solutions to some equation) and a gauge action (a

group action preserving solutions to said equation). In gauge theory, we only care about the moduli space: the set of

objects modulo the gauge action. Symmetric objects are those whose equivalence class in the moduli space is fixed by

the action of some symmetry group.

I have been studying continuous symmetries, which allow me to use Lie theory as well as differentiate the equations

of symmetry, obtaining linear equations. These linear constraints are simple to solve and make solving the

non-linear constraints easier.

Theorem 1 [Lan24a, Theorem 1.1] Let X be a smooth manifold, G a compact Lie group, and S a compact, connected Lie
group. Suppose that G and S act smoothly on X on the left and the two actions commute. We have that [A] ∈ X/G is
fixed by S if and only if there exists a Lie algebra homomorphism ρ : Lie(S) → Lie(G) such that, for all x ∈ Lie(S),

x.A+ ρ(x).A = 0.

As compact Lie groups correspond to matrix Lie groups, this result reduces the problem of finding symmetric

elements to a problem in representation theory. Additionally, this theorem not only provides a simple method for

identifying symmetric elements, it produces all of them, providing a framework for classifying them.
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By using Theorem 1, I have found many novel examples of topological solitons [Lan25; Lan24b; Cha+22]. In

particular, I have found a spherically symmetric Sp(4) hyperbolic monopole that vanishes nowhere [Lan24b]. This is

surprising, as for Sp(1) hyperbolic monopoles, the number of zeros is related to the charge of the monopole.

However, my novel monopoles demonstrate that this does not hold for higher rank structure groups, necessitating

the study of these higher rank structure groups. This Sp(4)monopole is also in stark contrast to the family of Sp(1)
monopoles that all vanish at the origin [Oli14, Appendix A].

One of the objects that I have studied using Theorem 1 is instantons (on R4
). The holonomy of instantons closely

approximates skyrmions [AM89]. This is useful, as instantons are relatively simpler to find, due to the

Atiyah—Drinfeld—Hitchin—Manin (ADHM) theorem. Indeed, I have identified several novel instantons [Lan25].

Due to the relationship between skyrmions and instantons, many authors began searching for symmetric instantons.

This search utilized representations of finite groups or abelian groups and continues to be an active area [Whi22;

CH22; Bec20; MS14; Coc14; AS13]. However, the justification of the use of these methods was very specific to

instantons and not widely applicable. Similarly, work has been done using representations of finite groups to study

symmetric monopoles [BD23; Bra11; BDE11; BE10]. My work differs by considering Lie groups (abelian and

non-abelian) and is applicable to general cases, it is not restricted to specific solitons. In fact, it is not restricted to

working solely on solitons.

As an example of an application of Theorem 1, I consider rotationally symmetric instantons. By the powerful ADHM

theorem, instantons (solutions to the self-dual equations with finite action) correspond to ADHM data (quaternionic

matrices satisfying some non-linear constraints). While ADHM data is much easier to find than instantons, the

non-linear constraints still provide a challenge, especially when dealing with higher rank structure groups. By

carefully handling problems arising from non-compactness, I obtained the following result.

Theorem 2 [Lan25, Theorem 7.1] A Sp(n) instanton with ADHM data M̂ =

[
L

M

]
∈ Mat(n+ k, k,H) has rotational

symmetry if and only if there is some Lie algebra homomorphism ρ : sp(1)⊕ sp(1) → so(k) such that for all
υ, ω ∈ sp(1),

νM + [ρ(ν, ω),M ]−Mω = 0 and
[
ρ(ν, ω), M̂ †M̂

]
= 0.

Theorem 3 [Lan25; Lan24b; Cha+22] I have obtained results similar to Theorem 2 for instantons with every kind of
continuous conformal symmetry as well as axial and spherically symmetric hyperbolic and Euclidean monopoles.

The following result shows the power of Theorem 1: it not only helps us find examples but also tells us when we have

all of them. Note that I talk about instantons that live on R4
, which are equivalent to instantons living on S4

[Uhl82].

Corollary 1 [Lan25, Corollary 5.44] The basic instanton is the only instanton symmetric under all the isometries of the
four-sphere.

Symmetry breaking
Symmetry breaking is part of the topological classification of monopoles. While monopoles with arbitrary symmetry

breaking is not a new concept [GNO77], the main focus of monopole research has been monopoles with structure

group SU(2) ≃ Sp(1), where the symmetry is always broken toU(1). In fact, much of the work on SU(n)
monopoles—Euclidean and hyperbolic—has focused on those with maximal symmetry breaking, which is a

generalization of the SU(2) case. For instance, work generalizing Braam–Austin’s discrete Nahm equations to

SU(n) hyperbolic monopoles with maximal symmetry breaking [Cha18; BA90].
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Despite the focus on maximal symmetry breaking, some work was done on monopoles with minimal symmetry

breaking. In particular, a specific moduli space of monopoles with minimal symmetry was examined in depth,

providing an important example of a hyper-Kähler manifold [Dan93]. Except for work on these two extremal cases,

maximal and minimal symmetry breaking, little was known about monopoles with arbitrary symmetry breaking.

Recently, there has been more interest in monopoles with arbitrary symmetry breaking. For instance, recent work

has generalized the Nahm transform for SU(n) Euclidean monopoles with arbitrary symmetry breaking [CN22].

Previous work of mine with collaborators has used this Nahm transform to generate SU(n) Euclidean monopoles

with continuous symmetries and neither maximal nor minimal symmetry breaking [Cha+22]. Additionally, it has

been proven that the moduli space of monopoles with arbitrary symmetry breaking and a compact, connected Lie

group for a structure group is not only composed of strata with dimension divisible by four, but is

hyper-Kähler [Men24; Sán19]. This answered a long-standing conjecture [MS03, Conjecture 3.3].

For general compact, connected Lie groups, little is written about classifying symmetry breaking. These other cases

are important as previous work of mine involves providing a framework for classifying Sp(n) hyperbolic
monopoles with continuous symmetries [Lan24b]. Given the recent focus on arbitrary symmetry breaking for

arbitrary structure groups, we needed to understand this phenomenon in general.

As an example of my work on symmetry breaking, the following result outlines the symmetry breaking for Sp(n)
monopoles. Similar results provide a simple classification of symmetry breaking for all Lie groups with a classical,

simple Lie algebra. I also outlined a method for doing the same for the exceptional simple Lie algebras, which

provides a way to classify symmetry breaking for all compact, connected Lie groups [Lan24c].

Theorem 4 [Lan24c, Theorem 2.3.37] Let Φ∞ ∈ sp(n). Let α1, . . ., αn be the modulus of the right eigenvalues of Φ∞.
Let N be the number of distinct, non-zero values of αi. Then the symmetry breaking of Φ∞ is given by the group ZN .

As another example of the importance of my work on symmetry breaking, through this examination, I discovered

that the typical notion of minimal symmetry breaking for SU(n)monopoles is too restrictive. Indeed, minimal

symmetry breaking occurs when Φ∞ ∈ su(n) has two distinct eigenvalues and one has multiplicity one. The

following result shows that monopoles where Φ∞ has two distinct eigenvalues and any multiplicity have the same

symmetry breaking as typical minimal symmetry breaking.

Theorem 5 [Lan24c, Theorem 2.3.31] Let Φ∞ ∈ su(n). Let N be the number of distinct eigenvalues of Φ∞. Then the
symmetry breaking of Φ∞ is given by the group ZN−1.

Research Program
My current focus is converting my thesis into papers to be published. Section 2.1 of my thesis has already been

published, but the rest of the thesis contains three papers’ worth of novel research. Afterwards, I have several ideas

on where to take the research program that I developed over the course of my Ph.D. Below I list some of these

directions that I am interested in. Not only is this list not exhaustive, I am very open to seeing it evolve as a result of

discussions and collaborations with new colleagues.

Direction #1: Symmetries in infinite dimensions
Over the course of my Ph.D., I developed Theorem 1 and applied it to many gauge-theoretic objects: Euclidean

monopoles, hyperbolic monopoles, and instantons. Going forward, I would like to expand the scope of this result

and find applications to study moduli spaces outside of those found in gauge theory. As one example, I would like to

extend my result to say something about when the spaces of objects and gauge transformations are

infinite-dimensional. Subsequent projects could then focus on applying these results to various paradigms.

3



Although Theorem 1 has applications to many other gauge-theoretic objects, in general, when dealing with such

objects, the space of objects and the gauge group are infinite-dimensional; only their moduli space is

finite-dimensional. The aforementioned applications were made possible due to the ADHM and Nahm transforms,

which provide a correspondence between the moduli space generated by these infinite-dimensional spaces and a

moduli space generated by finite-dimensional spaces. As we are only interested in the moduli space, these

correspondences allowed me to use the finite-dimensional replacements.

In general, we do not have such transforms and are stuck with the infinite-dimensional spaces. These spaces require

an infinite-dimensional analogue to Theorem 1. Such a result would make finding other symmetric gauge-theoretic

objects much simpler, which would provide us with many examples of these objects to study, where they are sorely

lacking.

Direction #2: Spectral curves and topological recursion
One of the most interesting aspects of SU(2)monopoles is their relationships with other objects: SU(2)monopoles

are in one-to-one correspondences with Nahm data, rational maps, and spectral curves. These alternative

viewpoints have been crucial to understanding the moduli space of monopoles and finding examples of monopoles.

Recent work on monopoles, including my own, has focused on understanding those with higher rank structure

groups [CN22; Cha+22; Men24; Sán19]. In particular, the Nahm transform has been generalized, providing a

one-to-one correspondence between SU(n)monopoles with arbitrary symmetry breaking and Nahm data [CN22].

Other work has generalized the correspondence between spectral curves and SU(n)monopoles with maximal

symmetry breaking [HM89]. The first step in this research direction is a project generalizing the correspondence

between spectral curves and SU(n)monopoles with arbitrary symmetry breaking.

Topological recursion is a construction in algebraic geometry which studies invariants of spectral curves. It has been

applied to study random matrices, Gromov–Witten invariants, enumerative geometry, and knot theory [EO15;

EO07]. Additionally, it has been used to study Higgs bundles, which are related to monopoles, as they are both

dimensional reductions of the self-dual equations [BH19]. After finding a correspondence between spectral curves

and general SU(n)monopole, I want to use topological recursion to study monopoles via these spectral curves,

obtaining invariants of these objects.

Direction #3: Examining geodesic submanifolds
As a result of my applications of Theorem 1, I have obtained many geodesic submanifolds of moduli spaces. Due to

time constraints during my Ph.D., I was unable to study these geodesic submanifolds. Going forward, I would like to

examine these spaces through multiple projects and learn more about their properties. Below, I discuss how these

geodesic submanifolds can be used to study the dynamics of physical phenomena.

By studying the dynamics of topological solitons, we can examine how they interact. For instance, by studying the

dynamics of skyrmions, we can model important nuclear reactions like that of the cancer therapy BNCT. Recall that

instantons generate Skyrme fields closely approximating skyrmions. It turns out that geodesic motion on the moduli

space of instantons closely approximates skyrmion dynamics [SS99]. By studying symmetric topological solitons, I

have identified novel geodesic submanifolds of the moduli spaces of instantons [Lan24c]. By examining these

submanifolds, I can not only approximate novel skyrmions, I can study their dynamics.

Euclidean monopole dynamics are closely approximated by geodesic motion on their moduli space [Stu94].

Historically, the focus of monopole research has been when the structure group is SU(2). This is primarily due to

the fact that few examples were known for higher rank structure groups. I have identified novel geodesic

submanifolds of the moduli spaces of Euclidean monopoles for higher rank structure groups [Cha+22]. While it is
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known that the moduli space is hyper-Kähler, an explicit metric for the moduli space has not been found [Men24]. In

the absence of such a metric, motion is still difficult to understand. By using my submanifolds, I can study the

motion of monopoles in more depth.

Unfortunately, the natural L2
metric used for Euclidean monopoles diverges for hyperbolic monopoles. As such, a

different metric is needed. The natural metric in the Euclidean case is nice as it is hyper-Kähler. Recent work has

identified a hyperbolic analogue of hyper-Kähler geometry on the moduli space of SU(2) hyperbolic
monopoles [FH24]. By generalizing this metric to higher rank structure groups, I can use my novel hyperbolic

monopoles to compute this metric on geodesic submanifolds and examine its structure. Moreover, should the

geodesic motion be shown to approximate monopole dynamics, then my novel examples can be used to examine the

dynamics of hyperbolic monopoles.

Student Training
Many of the ideas I started to explore during my Ph.D. present opportunities for training students at various levels

through supervised projects. Below are some examples.

Student project #1

The first project involves finding Euclidean monopoles with arbitrary charges and symmetry breaking. Based on my

work with collaborators, I have identified novel spherically symmetric Euclidean monopoles [Cha+22]. Recent work

has identified a hyper-Kähler structure on the moduli space of Euclidean monopoles [Men24]. However, we do not

know that these moduli spaces are all non-empty. Indeed, in my collaborative work, we only identified monopoles

with a specific kind of symmetry breaking. However, by Theorem 1, if there are spherically symmetric monopoles

with arbitrary symmetry breaking, then they can be produced in the same manner as the aforementioned novel

Euclidean monopoles. The production of these monopoles is only a matter of computation, albeit one that requires

significant investment and supervision.

Student project #2

The second project involves proving the conjecture that I proposed in my thesis. The group of conformal

symmetries on R4
is SL(2,H) and the symmetry group of an instanton is a subgroup of this group. In my thesis, I

conjecture that the symmetry group of a non-flat instanton is conjugate to a subgroup of

Sp(2) ⊆ SL(2,H) [Lan24c]. We can decompose SL(2,H) as [FS16]

SL(2,H) = Sp(2) {diag(ν, 1/ν) | ν ∈ (0, 1]} Sp(2).

Thus, we need only check that up to some consistent conjugation, ν must be one for every element of the symmetry

group. Unfortunately, I ran out of time to complete this investigation during my Ph.D.

Student project #3

The third project involves applying Theorem 1 to study symmetric calorons. Calorons are periodic instantons and

are closely related to monopoles and skyrmions [Cor18a]. In fact, calorons can be used to construct

skyrmions [Cor18b]. It is believed that understanding calorons may help solve the confinement / mass-gap problem,

a Millenium Prize Problem [Gre11, § 8.5]. Calorons are related to Nahm data on a circle via the Nahm

transform [CH10]. As such, we are able to apply Theorem 1 to this situation in order to generate examples of

symmetric calorons, which have received recent study for finite symmetries [KNT21; Cor18c].
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